Search results
Results from the WOW.Com Content Network
Soil nitrogen typically decreases by 0.2 to 0.3% for every temperature increase by 10 °C. Usually, grassland soils contain more soil nitrogen than forest soils, because of a higher turnover rate of grassland organic matter. [41] Cultivation decreases soil nitrogen by exposing soil organic matter to decomposition by microorganisms, [42] most ...
Soil gases (soil atmosphere [1]) are the gases found in the air space between soil components. The spaces between the solid soil particles, if they do not contain water, are filled with air. The primary soil gases are nitrogen, carbon dioxide and oxygen. [2] Oxygen is critical because it allows for respiration of both plant roots and soil ...
Nitrogen is present in the environment in a wide variety of chemical forms including organic nitrogen, ammonium (NH + 4), nitrite (NO − 2), nitrate (NO − 3), nitrous oxide (N 2 O), nitric oxide (NO) or inorganic nitrogen gas (N 2). Organic nitrogen may be in the form of a living organism, humus or in the intermediate products of organic ...
Nitrogen is plentiful in the Earth's atmosphere, and a number of commercially-important agricultural plants engage in nitrogen fixation (conversion of atmospheric nitrogen to a biologically useful form). However, plants mostly receive their nitrogen through the soil, where it is already converted in biological useful form.
Soils with humus can vary in nitrogen content but typically have 3 to 6 percent nitrogen. Raw organic matter, as a reserve of nitrogen and phosphorus, is a vital component affecting soil fertility. [156] Humus also absorbs water, and expands and shrinks between dry and wet states to a higher extent than clay, increasing soil porosity. [174]
As nitrogen naturally cycles through the air, water and soil it undergoes various chemical and biological transformations. Nitrogen promotes plant growth. Livestock then eat the crops producing manure, which is returned to the soil, adding organic and mineral forms of nitrogen. The cycle is complete when the next crop uses the amended soil. [1]
[11] [23] Trees that have arbuscular mycorrhizal associations are more likely to benefit from an increase in soil nitrogen, as these fungi are unable to break down soil organic nitrogen. [24] Two other studies found evidence that increased N availability has resulted in declines in species-diverse heathlands.
Nitrogen cycle. Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite.Nitrification is an important step in the nitrogen cycle in soil.The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria.