Search results
Results from the WOW.Com Content Network
Ultrasound attenuation spectroscopy is a method for characterizing properties of fluids and dispersed particles. It is also known as acoustic spectroscopy. There is an international standard for this method. [1] [2] Measurement of attenuation coefficient versus ultrasound frequency yields
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
Mechanical index (MI) is a unitless ultrasound metric. It is defined as [1] =, where P r is the peak rarefaction pressure of the ultrasound wave , derated by an attenuation factor to account for in-tissue acoustic attenuation; f c is the center frequency of the ultrasound pulse .
Attenuation coefficients are used to quantify different media according to how strongly the transmitted ultrasound amplitude decreases as a function of frequency. The attenuation coefficient ( α {\displaystyle \alpha } ) can be used to determine total attenuation in dB in the medium using the following formula:
Ultrasound transmission tomography (UTT) is a form of tomography involving ultrasound. [1]Like X-ray tomography, the attenuation of the ultrasound as it passes through the object can be measured, but since the speed of sound is so much lower than the speed of light, the delay as it passes through the object can also be measured, allowing estimation of both the attenuation coefficient and the ...
The figure provided in [30] provides an estimation of the attenuation that the ultrasound would suffer as it propagated through air. The figures from this graph correspond to completely linear propagation, and the exact effect of the nonlinear demodulation phenomena on the attenuation of the ultrasonic carrier waves in air was not considered.
The first efforts to use ultrasonic testing to detect flaws in solid material occurred in the 1930s. [1] On May 27, 1940, U.S. researcher Dr. Floyd Firestone of the University of Michigan applies for a U.S. invention patent for the first practical ultrasonic testing method.
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).