Search results
Results from the WOW.Com Content Network
Torque effect is an effect experienced in helicopters and single propeller-powered aircraft is an example of Isaac Newton's third law of motion, that "for every action, there is an equal and opposite reaction." In helicopters, the torque effect causes the main rotor to turn the
A typical helicopter has three flight control inputs: the cyclic stick, the collective lever, and the anti-torque pedals. [2] Depending on the complexity of the helicopter, the cyclic and collective may be linked together by a mixing unit , a mechanical or hydraulic device that combines the inputs from both and then sends along the "mixed ...
Another way to eliminate the effect of torque created by the rotorwing is by mounting the engine on the tips of the rotorwing rather than inside the helicopter itself; this is called a tip jet. One example of a helicopter using such a system is the NHI H-3 Kolibrie , which had a ramjet on each of the two wingtips, and an auxiliary power unit to ...
Loss of tail-rotor effectiveness (LTE) [1] occurs when the tail rotor of a helicopter is exposed to wind forces that prevent it from carrying out its function—that of cancelling the torque of the engine and transmission. Any low-airspeed high-power environment provides an opportunity for it to occur.
Most helicopters have a single main rotor but require a separate rotor to overcome torque. This is accomplished through a variable-pitch antitorque rotor or tail rotor. This is the design that Igor Sikorsky settled on for his VS-300 helicopter, and it has become the recognized convention for helicopter design, although designs do vary.
One rotor. Powered rotors require compensation for the torque reaction causing yaw, except in the case of tipjet drive. One rotor rotorcraft are typically called monocopters. Two rotors. These typically rotate in opposite directions cancelling the torque reaction so that no tail rotor or other yaw stabiliser is needed. These rotors can be laid ...
Some troops leave the battlefield injured. Others return from war with mental wounds. Yet many of the 2 million Iraq and Afghanistan veterans suffer from a condition the Defense Department refuses to acknowledge: Moral injury.
In 1943, primary investor G & J Weir Ltd. revived the moribund Cierva Autogiro Company to develop an experimental helicopter to Air Ministry Specification E.16/43. The W.9 was to investigate James G. Weir's contention that a powered tilting hub-controlled rotor with automatic collective pitch control, and torque reaction control using jet efflux, was both safer and more efficient than the ...