Search results
Results from the WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
The problem of deciding whether for a given Datalog program there is an equivalent nonrecursive program (corresponding to a positive relational algebra query, or, equivalently, a formula of positive existential first-order logic, or, as a special case, a conjunctive query) is known as the Datalog boundedness problem and is undecidable.
The standard relational algebra and relational calculus, and the SQL operations based on them, are unable to express directly all desirable operations on hierarchies. The nested set model is a solution to that problem. An alternative solution is the expression of the hierarchy as a parent-child relation. Joe Celko called this the adjacency list ...
In database theory, a relation, as originally defined by E. F. Codd, [1] is a set of tuples (d 1,d 2,...,d n), where each element d j is a member of D j, a data domain. Codd's original definition notwithstanding, and contrary to the usual definition in mathematics, there is no ordering to the elements of the tuples of a relation.
Codd's theorem states that relational algebra and the domain-independent relational calculus queries, two well-known foundational query languages for the relational model, are precisely equivalent in expressive power. That is, a database query can be formulated in one language if and only if it can be expressed in the other.
A database organized in terms of the relational model is a relational database. The purpose of the relational model is to provide a declarative method for specifying data and queries: users directly state what information the database contains and what information they want from it, and let the database management system software take care of ...
Codd-tables algebra is based on the usual Codd's single NULL values. The table T above is an example of Codd-table. Codd-table algebra supports projection and positive selections only. It is also demonstrated in [IL84 that it is not possible to correctly extend more relational operators over Codd-Tables.
The sixth normal form is currently as of 2009 being used in some data warehouses where the benefits outweigh the drawbacks, [9] for example using anchor modeling.Although using 6NF leads to an explosion of tables, modern databases can prune the tables from select queries (using a process called 'table elimination' - so that a query can be solved without even reading some of the tables that the ...