Search results
Results from the WOW.Com Content Network
Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. [9] Rubidium is the first alkali metal in the group to have a density higher than water.
In the absorption spectrum of rubidium vapour, Rb 2 has a major effect. Single atoms of rubidium in the vapour cause lines in the spectrum, but the dimer causes wider bands to appear. The most severe absorption between 640 and 730 nm makes the vapour almost opaque from 670 to 700 nm, wiping out the far red end of the spectrum.
Rubidium bromide is an inorganic compound with the chemical formula Rb Br. It is a salt of hydrogen bromide. It consists of bromide anions Br − and rubidium cations Rb +. It has a NaCl crystal structure, with a lattice constant of 685 picometres. [1] There are several methods for synthesising rubidium bromide.
A bromide ion is the negatively charged form (Br −) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. [ 3 ]
At room temperature, hydrogen bromide is a colourless gas, like all the hydrogen halides apart from hydrogen fluoride, since hydrogen cannot form strong hydrogen bonds to the large and only mildly electronegative bromine atom; however, weak hydrogen bonding is present in solid crystalline hydrogen bromide at low temperatures, similar to the ...
Hydrogen bromide – HBr [171] Hypobromous acid – HOBr [172] Iodine monobromide – IBr [173] Iron(II) bromide – FeBr 2 [174] Iron(III) bromide – FeBr 3 [175] Lead(II) bromide – PbBr 2 [176] Lithium bromide – LiBr [177] Magnesium bromide – MgBr 2 [178] Mercury(I) bromide – Hg 2 Br 2 [179] Mercury(II) bromide – HgBr 2 [180] [181 ...
The rather restricted chemistry of krypton in the +2 oxidation state parallels that of the neighboring element bromine in the +1 oxidation state; due to the scandide contraction it is difficult to oxidize the 4p elements to their group oxidation states. Until the 1960s no noble gas compounds had been synthesized.
The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the ...