Search results
Results from the WOW.Com Content Network
The resulting values are quotient-values and hard to interpret. A value of 1 or even less indicates a clear inlier, but there is no clear rule for when a point is an outlier. In one data set, a value of 1.1 may already be an outlier, in another dataset and parameterization (with strong local fluctuations) a value of 2 could still be an inlier.
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
In the most straightforward method, the boundary of the lower whisker is the minimum value of the data set, and the boundary of the upper whisker is the maximum value of the data set. Because of this variability, it is appropriate to describe the convention that is being used for the whiskers and outliers in the caption of the box-plot.
In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location.
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable point. Note that only one point may be rejected from a data set using a Q test.
An outlier in clustering is a data point that does not belong to any of the clusters. One way of modeling outliers in model-based clustering is to include an additional mixture component that is very dispersed, with for example a uniform distribution.
The book has seven chapters. [1] [4] The first is introductory; it describes simple linear regression (in which there is only one independent variable), discusses the possibility of outliers that corrupt either the dependent or the independent variable, provides examples in which outliers produce misleading results, defines the breakdown point, and briefly introduces several methods for robust ...