Search results
Results from the WOW.Com Content Network
A relation is reflexive if, and only if, its complement is irreflexive. A relation is strongly connected if, and only if, it is connected and reflexive. A relation is equal to its converse if, and only if, it is symmetric. A relation is connected if, and only if, its complement is anti-symmetric.
H.M. – harmonic mean. HOL – higher-order logic. Hom – Hom functor. hom – hom-class. hot – higher order term. HOTPO – half or triple plus one. hvc – havercosine function. (Also written as havercos.) hyp – hypograph of a function.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
An example of an irreflexive relation, which means that it does not relate any element to itself, is the "greater than" relation (>) on the real numbers. Not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (that is, neither all nor none are).
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A relation is transitive if it is closed under this operation, and the transitive closure of a relation is its closure under this operation. A preorder is a relation that is reflective and transitive. It follows that the reflexive transitive closure of a relation is the smallest preorder containing it