enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    Implicit type conversion, also known as coercion or type juggling, is an automatic type conversion by the compiler. Some programming languages allow compilers to provide coercion; others require it. In a mixed-type expression, data of one or more subtypes can be converted to a supertype as needed at runtime so that the program will run correctly.

  3. Strong and weak typing - Wikipedia

    en.wikipedia.org/wiki/Strong_and_weak_typing

    There are many examples of languages that allow implicit type conversions, but in a type-safe manner. For example, both C++ and C# allow programs to define operators to convert a value from one type to another with well-defined semantics. When a C++ compiler encounters such a conversion, it treats the operation just like a function call.

  4. Type system - Wikipedia

    en.wikipedia.org/wiki/Type_system

    The process of verifying and enforcing the constraints of types—type checking—may occur at compile time (a static check) or at run-time (a dynamic check). If a language specification requires its typing rules strongly, more or less allowing only those automatic type conversions that do not lose information, one can refer to the process as strongly typed; if not, as weakly typed.

  5. Compatibility of C and C++ - Wikipedia

    en.wikipedia.org/wiki/Compatibility_of_C_and_C++

    C++ enforces stricter typing rules (no implicit violations of the static type system [1]), and initialization requirements (compile-time enforcement that in-scope variables do not have initialization subverted) [7] than C, and so some valid C code is invalid in C++. A rationale for these is provided in Annex C.1 of the ISO C++ standard.

  6. Type inference - Wikipedia

    en.wikipedia.org/wiki/Type_inference

    It would be possible to infer the types of all the variables at compile time. In the example above, the compiler would infer that result and x have type integer since the constant 1 is type integer, and hence that add_one is a function int -> int. The variable result2 isn't used in a legal manner, so it wouldn't have a type.

  7. Downcasting - Wikipedia

    en.wikipedia.org/wiki/Downcasting

    While we could also convert myObject to a compile-time String using the universal java.lang.Object.toString(), this would risk calling the default implementation of toString() where it was unhelpful or insecure, and exception handling could not prevent this. In C++, run-time type checking is implemented through dynamic_cast.

  8. Constructor (object-oriented programming) - Wikipedia

    en.wikipedia.org/wiki/Constructor_(object...

    Conversion constructors provide a means for a compiler to implicitly create an object belonging to one class based on an object of a different type. These constructors are usually invoked implicitly to convert arguments or operands to an appropriate type, but they may also be called explicitly.

  9. C++ - Wikipedia

    en.wikipedia.org/wiki/C++

    Most C code can easily be made to compile correctly in C++ but there are a few differences that cause some valid C code to be invalid or behave differently in C++. For example, C allows implicit conversion from void * to other pointer types but C++ does not (for type safety reasons).