Search results
Results from the WOW.Com Content Network
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
Including 0, the set has a semiring structure (0 being the additive identity), known as the probability semiring; taking logarithms (with a choice of base giving a logarithmic unit) gives an isomorphism with the log semiring (with 0 corresponding to ), and its units (the finite numbers, excluding ) correspond to the positive real numbers.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
a highly abundant number has a sum of positive divisors that is greater than any lesser number; that is, σ(n) > σ(m) for every positive integer m < n. Counterintuitively, the first seven highly abundant numbers are not abundant numbers. a prime number has only 1 and itself as divisors; that is, d(n) = 2
A number of nucleons (either protons or neutrons) such that they are arranged into complete shells within the atomic nucleus. A018226: Superperfect numbers: 2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, ... Positive integers n for which σ 2 (n) = σ(σ(n)) = 2n. A019279: Bernoulli numbers B n
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full.
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.