Search results
Results from the WOW.Com Content Network
To describe this general setting, a 3-variable (,,) spatially dependent extension of the classical Wilson–Cowan model can be utilized. [10] Under appropriate initial conditions, [ 7 ] the excitatory component, u, dominates over the inhibitory component, I, and the three-variable system reduces to the two-variable Pinto-Ermentrout type model ...
The independent variable of a study often has many levels or different groups. In a true experiment, researchers can have an experimental group, which is where their intervention testing the hypothesis is implemented, and a control group, which has all the same element as the experimental group, without the interventional element.
This article describes experimental procedures for determining whether a coin is fair or unfair. There are many statistical methods for analyzing such an experimental procedure. This article illustrates two of them. Both methods prescribe an experiment (or trial) in which the coin is tossed many times and the result of each toss is recorded.
RSM is an empirical model which employs the use of mathematical and statistical techniques to relate input variables, otherwise known as factors, to the response. RSM became very useful because other methods available, such as the theoretical model, could be very cumbersome to use, time-consuming, inefficient, error-prone, and unreliable.
Compute from the observations the observed value t obs of the test statistic T. Decide to either reject the null hypothesis in favor of the alternative or not reject it. The Neyman-Pearson decision rule is to reject the null hypothesis H 0 if the observed value t obs is in the critical region, and not to reject the null hypothesis otherwise. [31]
In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean. Those second-order terms are usually dropped when finding the variance; see below). 5.
There are several methods of finding an optimal design, given an a priori restriction on the number of experimental runs or replications. Some of these methods are discussed by Atkinson, Donev and Tobias and in the paper by Hardin and Sloane. Of course, fixing the number of experimental runs a priori would be impractical. Prudent statisticians ...