Search results
Results from the WOW.Com Content Network
Their 32-bit linear addresses can address 4 billion different items. Using word addressing, a 32-bit processor could address 4 Gigawords; or 16 Gigabytes using the modern 8-bit byte. If the 386 and its successors had used word addressing, scientists, engineers, and gamers could all have run programs that were 4x larger on 32-bit machines.
A 32-bit register can store 2 32 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (2 32 − 1) for representation as an binary number, and −2,147,483,648 (−2 31) through 2,147,483,647 (2 31 − 1) for representation as two's complement.
For instance, a computer said to be "32-bit" also usually allows 32-bit memory addresses; a byte-addressable 32-bit computer can address 2 32 = 4,294,967,296 bytes of memory, or 4 gibibytes (GiB). This allows one memory address to be efficiently stored in one word. However, this does not always hold true.
The size of the "byte offset" from the address being translated is still 12 bits, so total physical address size increases from 32 bits to 36 bits (i.e. from 20+12 to 24+12). This increased the physical memory that is theoretically addressable by the CPU from 4 GB to 64 GB.
MIPS I has instructions that load and store 8-bit bytes, 16-bit halfwords, and 32-bit words. Only one addressing mode is supported: base + displacement. Since MIPS I is a 32-bit architecture, loading quantities fewer than 32 bits requires the datum to be either sign-extended or zero-extended to 32 bits.
The system was designed to offer backward compatibility with the PDP-11 while extending the memory to a full 32-bit implementation and adding demand paged virtual memory. The name VAX refers to its Virtual Address eXtension concept that allowed programs to make use of this newly available memory while still being compatible with unmodified user ...
In computing, a virtual address space (VAS) or address space is the set of ranges of virtual addresses that an operating system makes available to a process. [1] The range of virtual addresses usually starts at a low address and can extend to the highest address allowed by the computer's instruction set architecture and supported by the operating system's pointer size implementation, which can ...
The primary defining characteristic of IA-32 is the availability of 32-bit general-purpose processor registers (for example, EAX and EBX), 32-bit integer arithmetic and logical operations, 32-bit offsets within a segment in protected mode, and the translation of segmented addresses to 32-bit linear addresses. The designers took the opportunity ...