Search results
Results from the WOW.Com Content Network
The hypothalamus has a central neuroendocrine function, most notably by its control of the anterior pituitary, which in turn regulates various endocrine glands and organs. Releasing hormones (also called releasing factors) are produced in hypothalamic nuclei then transported along axons to either the median eminence or the posterior pituitary ...
If conception does not occur, decreasing excretion of progesterone will allow the hypothalamus to restart secretion of GnRH. These hormone levels also control the uterine (menstrual) cycle causing the proliferation phase in preparation for ovulation, the secretory phase after ovulation, and menstruation when conception does not occur.
The hypothalamus, pancreas, and thymus also function as endocrine glands, among other functions. (The hypothalamus and pituitary glands are organs of the neuroendocrine system. One of the most important functions of the hypothalamus—it is located in the brain adjacent to the pituitary gland—is to link the endocrine system to the nervous ...
The hypothalamus regulates the hormonal output of the anterior pituitary and creates two hormones that it exports to the posterior pituitary for storage and later release. Four of the six anterior pituitary hormones are tropic hormones that regulate the function of other endocrine organs. Most anterior pituitary hormones exhibit a diurnal ...
Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland. [2] The HPA, HPG, and HPT axes are three pathways in which the hypothalamus and pituitary direct neuroendocrine function.
Pituitary adenomas, noncancerous tumors that occur in the pituitary gland; All of the functions of the pituitary gland can be adversely affected by an over- or under-production of associated hormones. The pituitary gland is important for mediating the stress response, via the hypothalamic–pituitary–adrenal axis (HPA axis). Critically ...
Other men, such as men with obesity or pituitary dysfunction, develop low testosterone because the hormonally active parts of the brain (the hypothalamus and the pituitary) do not produce enough ...
For example, thyrotropin-releasing hormone (TRH) is released from the hypothalamus in response to low levels of secretion of thyroid-stimulating hormone (TSH) from the pituitary gland. The TSH in turn is under feedback control by the thyroid hormones T4 and T3. When the level of TSH is too high, they feed back on the brain to shut down the ...