enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  4. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  5. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory ), [ 1 ...

  6. Relaxation (NMR) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(NMR)

    In conventional NMR spectroscopy, T 1 limits the pulse repetition rate and affects the overall time an NMR spectrum can be acquired. Values of T 1 range from milliseconds to several seconds, depending on the size of the molecule, the viscosity of the solution, the temperature of the sample, and the possible presence of paramagnetic species (e.g ...

  7. Magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance

    The first observation of electron-spin resonance was in 1944 by Y. K. Zavosky, a Soviet physicist then teaching at Kazan State University (now Kazan Federal University). ). Nuclear magnetic resonance was first observed in 1946 in the US by a team led by Felix Bloch at the same time as a separate team led by Edward Mills Purcell, the two of whom would later be the 1952 Nobel Laureates in Ph

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    The first and most popular two-dimension NMR experiment is the homonuclear correlation spectroscopy (COSY) sequence, which is used to identify spins which are coupled to each other. It consists of a single RF pulse (p1) followed by the specific evolution time (t1) followed by a second pulse (p2) followed by a measurement period (t2). [7]

  9. Magic angle spinning - Wikipedia

    en.wikipedia.org/wiki/Magic_angle_spinning

    In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample (usually at a frequency of 1 to 130 kHz ) at the magic angle θ m (ca. 54.74°, where cos 2 θ m =1/3) with respect to the direction of the magnetic field .