Search results
Results from the WOW.Com Content Network
Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH) 2 where Ph is the phenyl group C 6 H 5 - and B(OH) 2 is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis.
The general structure of a boronic acid, where R is a substituent.. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
Pinacol is a branched alcohol which finds use in organic syntheses. It is a diol that has hydroxyl groups on vicinal carbon atoms. A white solid that melts just above room temperature, pinacol is notable for undergoing the pinacol rearrangement in the presence of acid and for being the namesake of the pinacol coupling reaction .
It has the formula [(CH 3) 4 C 2 O 2 B] 2; the pinacol groups are sometimes abbreviated as "pin", so the structure is sometimes represented as B 2 pin 2. It is a colourless solid that is soluble in organic solvents. It is a commercially available reagent for making pinacol boronic esters for organic synthesis.
They reported the reaction of phenylboronic acid in water (140-150 °C) to afford the protodeboronated product, benzene, after 40 hours. Initial synthetic applications of protodeboronation were found alongside the discovery of the hydroboration reaction, in which sequential hydroboration-protodeboronation reactions were used to convert alkynes ...
The Yamaguchi esterification is the chemical reaction of an aliphatic carboxylic acid and 2,4,6-trichlorobenzoyl chloride (TCBC, Yamaguchi reagent) to form a mixed anhydride which, upon reaction with an alcohol in the presence of stoichiometric amount of DMAP, produces the desired ester. It was first reported by Masaru Yamaguchi et al. in 1979 ...
As shown in Scheme 1, the ring synthesis of ring C began with a Diels-Alder reaction between diene 1.3 and dienophile 1.1 in the presence of phenylboronic acid (1.2), which, after addition of 2,2-dimethyl-1,3-propanediol, gave five-membered lactone 1.8 in 62% yield.
The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. The name of the rearrangement reaction comes from the rearrangement of pinacol to pinacolone .