Search results
Results from the WOW.Com Content Network
Thus, when one separates variables for first-order equations, one in fact moves the dx denominator of the operator to the side with the x variable, and the d(y) is left on the side with the y variable. The second-derivative operator, by analogy, breaks down as follows:
Therefore, the 2y on both sides can be cancelled out, leaving 3 = 6y, or y = 0.5. This is equivalent to subtracting 2y from both sides. At times, cancelling out can introduce limited changes or extra solutions to an equation. For example, given the inequality ab ≥ 3b, it looks like the b on both sides can be cancelled out to give a ≥ 3 as ...
Rather than adding the same number of tiles to both sides, the same number of tiles can be subtracted from both sides. For example, seven positive unit tiles can be removed from both sides. This leaves one positive x {\displaystyle x} tile on the left side and three positive unit tiles on the right side, so x = 3 {\displaystyle x=3} .
This counterintuitive result occurs because in the case where =, multiplying both sides by multiplies both sides by zero, and so necessarily produces a true equation just as in the first example. In general, whenever we multiply both sides of an equation by an expression involving variables, we introduce extraneous solutions wherever that ...
A two-sided property is fulfilled on both sides. A one-sided property is related to one (unspecified) of two sides. Although the terms are similar, left–right distinction in algebraic parlance is not related either to left and right limits in calculus, or to left and right in geometry.
For example, to divide the complex number a+bi by the complex number c+di, we postulate that the ratio equals the complex number e+fi, and we wish to find the values of the parameters e and f for which this is true. We write + + = +, and multiply both sides by the denominator to obtain
For example, if one subtracts 5 from the left side of an equation one also needs to subtract 5 from the right side to balance both sides. The goal of these steps is usually to isolate the variable one is interested in on one side, a process known as solving the equation for that variable.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.