Search results
Results from the WOW.Com Content Network
Then the matrix () having the greatest common divisor (,) as its entry is referred to as the GCD matrix on .The LCM matrix [] is defined analogously. [ 1 ] [ 2 ] The study of GCD type matrices originates from Smith (1875) who evaluated the determinant of certain GCD and LCM matrices.
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
A simplified version of the LLL factorization algorithm is as follows: calculate a complex (or p-adic) root α of the polynomial () to high precision, then use the Lenstra–Lenstra–Lovász lattice basis reduction algorithm to find an approximate linear relation between 1, α, α 2, α 3, . . . with integer coefficients, which might be an ...
For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The matrix T i of is the (m + n − i) × (m + n − 2i)-submatrix of S which is obtained by removing the last i rows of zeros in the submatrix of the columns 1 to n − i and n + 1 to m + n − i of S (that is removing i columns in each block and the i last rows of zeros).
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
(m − 1)/2 points at the start and end of the series cannot be calculated using this process. Various strategies can be employed to avoid this inconvenience. The data could be artificially extended by adding, in reverse order, copies of the first (m − 1)/2 points at the beginning and copies of the last (m − 1)/2