enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A decision version of the problem (testing whether some vertex u occurs before some vertex v in this order) is P-complete, [12] meaning that it is "a nightmare for parallel processing". [13]: 189 A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC ...

  4. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  5. Kosaraju's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kosaraju's_algorithm

    The only additional data structure needed by the algorithm is an ordered list L of graph vertices, that will grow to contain each vertex once. If strong components are to be represented by appointing a separate root vertex for each component, and assigning to each vertex the root vertex of its component, then Kosaraju's algorithm can be stated ...

  6. Implicit graph - Wikipedia

    en.wikipedia.org/wiki/Implicit_graph

    In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...

  7. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    1 S ← empty sequence 2 u ← target 3 if prev[u] is defined or u = source: // Proceed if the vertex is reachable 4 while u is defined: // Construct the shortest path with a stack S 5 insert u at the beginning of S // Push the vertex onto the stack 6 u ← prev[u] // Traverse from target to source

  8. Today's Wordle Hint, Answer for #1273 on Friday, December 13 ...

    www.aol.com/todays-wordle-hint-answer-1273...

    December 13, 2024 at 12:04 AM If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1273 ahead. Let's start with a few hints.

  9. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...