enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hill climbing - Wikipedia

    en.wikipedia.org/wiki/Hill_climbing

    In numerical analysis, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by making an incremental change to the solution.

  3. Min-conflicts algorithm - Wikipedia

    en.wikipedia.org/wiki/Min-conflicts_algorithm

    One such algorithm is min-conflicts hill-climbing. [1] Given an initial assignment of values to all the variables of a constraint satisfaction problem (with one or more constraints not satisfied), select a variable from the set of variables with conflicts violating one or more of its constraints.

  4. Local search (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(constraint...

    Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.

  5. Local search (optimization) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(optimization)

    When the choice of the neighbor solution is done by taking the one locally maximizing the criterion, i.e.: a greedy search, the metaheuristic takes the name hill climbing. When no improving neighbors are present, local search is stuck at a locally optimal point.

  6. Stochastic hill climbing - Wikipedia

    en.wikipedia.org/wiki/Stochastic_hill_climbing

    Stochastic hill climbing is a variant of the basic hill climbing method. While basic hill climbing always chooses the steepest uphill move, "stochastic hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move."

  7. Why C3.ai Stock Was Climbing Today - AOL

    www.aol.com/finance/why-c3-ai-stock-climbing...

    C3.ai also counts governments as a major customer segment and said its federal business represented more than 30% of bookings in its fiscal first quarter -- its most recent quarter -- including ...

  8. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    Mean-shift is a hill climbing algorithm which involves shifting this kernel iteratively to a higher density region until convergence. Every shift is defined by a mean shift vector. The mean shift vector always points toward the direction of the maximum increase in the density.

  9. Why C3.ai Stock Was Climbing Today - AOL

    www.aol.com/finance/why-c3-ai-stock-climbing...

    C3.ai's revenue growth has been accelerating, a promising sign, and the stock seems likely to be a winner as AI software goes mainstream. However, the company is still deeply unprofitable.