Search results
Results from the WOW.Com Content Network
Most aliphatic compounds are flammable, allowing the use of hydrocarbons as fuel, such as methane in natural gas for stoves or heating; butane in torches and lighters; various aliphatic (as well as aromatic) hydrocarbons in liquid transportation fuels like petrol/gasoline, diesel, and jet fuel; and other uses such as ethyne (acetylene) in welding.
Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one nitrogen atom. Hydrocarbons without an aromatic ring are called aliphatic. Approximately half of compounds known ...
As of alkanes, they first dehydrogenate to olefins, then form rings at the place of the double bond, becoming cycloalkanes, and finally gradually lose hydrogen to become aromatic hydrocarbons. [ 4 ] For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization.
A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings, and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless.
These include, for example, plasticizers in polymer-based formulations, rheology modifier in printing inks and carrier oil in anti-foaming agents. Naphthenic oils have been proven to be suitable in the tyre oils segment because of their low content of polycyclic aromatic hydrocarbons (PAHs), which are hazardous to health and the environment. 3.
In the petroleum refining and petrochemical industries, the initialism BTX refers to mixtures of benzene, toluene, and the three xylene isomers, all of which are aromatic hydrocarbons. The xylene isomers are distinguished by the designations ortho – (or o –), meta – (or m –), and para – (or p –) as indicated in the adjacent diagram.
A hydrocarbon is any chemical compound that consists only of the elements carbon (C) and hydrogen (H). They all contain a carbon frame, and have hydrogen atoms attached to the frame. Often the term is used as a shortened form of the term aliphatic hydrocarbon. Most hydrocarbons are combustible. [2]
Aliphatic kerosene is a type of kerosene which has a low aromatic hydrocarbon content, the aromatic content of crude oil varies greatly from oil field to oil field. However by solvent extraction it is possible to separate aromatic hydrocarbons from aliphatic (alkane) hydrocarbons.