enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Category:Error_detection...

    Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check

  3. Damm algorithm - Wikipedia

    en.wikipedia.org/wiki/Damm_algorithm

    The Damm algorithm is similar to the Verhoeff algorithm.It too will detect all occurrences of the two most frequently appearing types of transcription errors, namely altering a single digit or transposing two adjacent digits (including the transposition of the trailing check digit and the preceding digit).

  4. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.

  5. Locally recoverable code - Wikipedia

    en.wikipedia.org/wiki/Locally_recoverable_code

    A code has all-symbol locality and availability if every code symbol can be recovered from disjoint repair sets of other symbols, each set of size at most symbols. Such codes are called ( r , t ) a {\displaystyle (r,t)_{a}} -LRC.

  6. BCJR algorithm - Wikipedia

    en.wikipedia.org/wiki/BCJR_algorithm

    This algorithms or data structures -related article is a stub. You can help Wikipedia by expanding it.

  7. Verhoeff algorithm - Wikipedia

    en.wikipedia.org/wiki/Verhoeff_algorithm

    Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.

  8. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    Convolutional code with any code rate can be designed based on polynomial selection; [15] however, in practice, a puncturing procedure is often used to achieve the required code rate. Puncturing is a technique used to make a m / n rate code from a "basic" low-rate (e.g., 1/ n ) code.

  9. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.