Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used. In the second case, additional work is done as the volume changes, so the amount of heat required to raise the gas temperature (the specific heat capacity) is higher for this constant-pressure case.
Carbon dioxide: 3.640 0.04267 Carbon disulfide: 11.77 0.07685 Carbon monoxide: 1.505 0.0398500 Carbon tetrachloride: 19.7483 0.1281 Chlorine: 6.579 0.05622 Chlorobenzene:
Specific volume is commonly applied to: Molar volume; Volume (thermodynamics) Partial molar volume; Imagine a variable-volume, airtight chamber containing a certain number of atoms of oxygen gas. Consider the following four examples: If the chamber is made smaller without allowing gas in or out, the density increases and the specific volume ...
Figure 2 is an example of a generalized compressibility factor graph derived from hundreds of experimental PVT data points of 10 pure gases, namely methane, ethane, ethylene, propane, n-butane, i-pentane, n-hexane, nitrogen, carbon dioxide and steam.
Data obtained from CRC Handbook of Chemistry and Physics, 44th ed. pages 2560–2561, except for critical temperature line (31.1 °C) and temperatures −30 °C and below, which are taken from Lange's Handbook of Chemistry, 10th ed. page 1463.
Amagat's law states that the extensive volume V = Nv of a gas mixture is equal to the sum of volumes V i of the K component gases, if the temperature T and the pressure p remain the same: [1] [2] (,) = = (,). This is the experimental expression of volume as an extensive quantity.
Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable. The specific volume also allows systems to be ...