Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of + , taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of /. This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity .
This page was last edited on 29 September 2012, at 02:32 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.