Search results
Results from the WOW.Com Content Network
The subspace V × {0} of V ⊕ W is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of V ⊕ W can be written in one and only one way as the sum of an element of V and an element of W. The dimension of V ⊕ W is equal to the sum of the ...
The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.
If (V,φ) and (W,ψ) are representations of (say) a group G, then the direct sum of V and W is a representation, in a canonical way, via the equation (,) = (,). The direct sum of two representations carries no more information about the group G than the two representations do individually. If a representation is the direct sum of two proper ...
This applies also when E and F are linear subspaces or submodules of the vector space or module V. 2. Direct sum: if E and F are two abelian groups, vector spaces, or modules, then their direct sum, denoted is an abelian group, vector space, or module (respectively) equipped with two monomorphisms: and : such that is the internal direct sum of ...
= () for any e∈E and g∈G; here () denotes the differential of the right action of g on E at e. The one-parameter subgroups of G act vertically on E . The differential of this action allows one to identify the subspace V e {\displaystyle V_{e}} with the Lie algebra g of group G , say by map ι : V e → g {\displaystyle \iota \colon V_{e}\to ...
The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors. The binary function, called scalar multiplication, assigns to any scalar a in F and any vector v in V another vector in V, which is denoted av ...
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.