Search results
Results from the WOW.Com Content Network
The adsorption of ensemble molecules on a surface or interface can be divided into two processes: adsorption and desorption. If the adsorption rate wins the desorption rate, the molecules will accumulate over time giving the adsorption curve over time. If the desorption rate is larger, the number of molecules on the surface will decrease over time.
Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.
Adsorption The physical adherence or bonding of ions and molecules onto the surface of another phase (e.g., reagents adsorbed to a solid catalyst surface); Ion exchange An exchange of ions between two electrolytes or between an electrolyte solution and a complex. The reverse of sorption is desorption.
The desorption is a kinetically limited process, i.e. a heat of adsorption must be provided: these phenomena are homogeneous, i.e. same heat of adsorption for a given molecule layer. it is E 1 for the first layer, i.e. the heat of adsorption at the solid sample surface
Comparisons between the experimental adsorption energy and simulated energies for dissociative and molecular adsorption can also indicate the type of adsorption for a system [8] For measurement of adsorption isotherms, a controlled gas pressure and temperature determine the coverage when adsorption and desorption rates are in balance.
Adsorption is an essential step in heterogeneous catalysis. Adsorption is the process by which a gas (or solution) phase molecule (the adsorbate) binds to solid (or liquid) surface atoms (the adsorbent). The reverse of adsorption is desorption, the adsorbate splitting from adsorbent. In a reaction facilitated by heterogeneous catalysis, the ...
If a reaction occurs through these steps: A + S ⇌ AS → Products. where A is the reactant and S is an adsorption site on the surface and the respective rate constants for the adsorption, desorption and reaction are k 1, k −1 and k 2, then the global reaction rate is:
The adsorption sites (heavy dots) are equivalent and can have unit occupancy. Also, the adsorbates are immobile on the surface. The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes.