Search results
Results from the WOW.Com Content Network
In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This theorem is an immediate consequence of the higher dimensional chain rule given above, and it has exactly the same formula. The chain rule is also valid for Fréchet derivatives in Banach spaces.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
Difficult integrals may often be evaluated by changing variables; this is enabled by the substitution rule and is analogous to the use of the chain rule above. Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant . [ 1 ]
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno ( 1855 , 1857 ), although he was not the first to state or prove the formula.
One reason that Leibniz's notations in calculus have endured so long is that they permit the easy recall of the appropriate formulas used for differentiation and integration. For instance, the chain rule—suppose that the function g is differentiable at x and y = f(u) is differentiable at u = g(x).
The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies