Search results
Results from the WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Lis (Library of Iterative Solvers for linear systems, pronounced [lis]) is a scalable parallel software library to solve discretized linear equations and eigenvalue problems that mainly arise from the numerical solution of partial differential equations using iterative methods.
The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. [ 6 ] The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics ...
This equation is called the eigenvalue equation for T, and the scalar λ is the eigenvalue of T corresponding to the eigenvector v. T(v) is the result of applying the transformation T to the vector v, while λv is the product of the scalar λ with v. [37] [38]
Typically, the method is used in combination with some other method which finds approximate eigenvalues: the standard example is the bisection eigenvalue algorithm, another example is the Rayleigh quotient iteration, which is actually the same inverse iteration with the choice of the approximate eigenvalue as the Rayleigh quotient corresponding ...
In numerical linear algebra, the Rayleigh–Ritz method is commonly [12] applied to approximate an eigenvalue problem = for the matrix of size using a projected matrix of a smaller size <, generated from a given matrix with orthonormal columns. The matrix version of the algorithm is the most simple:
The theorem, as indicated above, applies to the resolution of equations called eigenvalue equations. i.e., the ones of the form HѰ = λѰ, where H is an operator, Ѱ is a function and λ is number called the eigenvalue. To solve problems of this type, we expand the unknown function Ѱ in terms of known functions. The number of these known ...
Given matrices and , the Sylvester equation + = has a unique solution for any if and only if and do not share any eigenvalue. Proof. The equation A X + X B = C {\displaystyle AX+XB=C} is a linear system with m n {\displaystyle mn} unknowns and the same number of equations.