Search results
Results from the WOW.Com Content Network
Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
A green angle formed by two red rays on the Cartesian coordinate system. In Euclidean geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. [1] Angles formed by two rays are also known as plane angles as they lie in the plane that contains the rays
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and ...
The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements .
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite.
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.