Search results
Results from the WOW.Com Content Network
In physics, specifically electromagnetism, the Biot–Savart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.
Coulomb's law can be found from Gauss's Law (electrostatic form) and the Biot–Savart law can be deduced from Ampere's Law (magnetostatic form). Lenz's law and Faraday's law can be incorporated into the Maxwell–Faraday equation. Nonetheless they are still very effective for simple calculations. Lenz's law; Coulomb's law; Biot–Savart law ...
Biot–Savart law describes the magnetic field set up by a steady current density. Named for Jean-Baptiste Biot and Félix Savart . Birch's law , in geophysics , establishes a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight.
The magnetic field generated by a steady current I (a constant flow of electric charges, in which charge neither accumulates nor is depleted at any point) [note 8] is described by the Biot–Savart law: [21]: 224 = ^, where the integral sums over the wire length where vector dℓ is the vector line element with direction in the same sense as ...
Benford's law: Mathematics: Frank Benford: Beer–Lambert law: Optics: August Beer, Johann Heinrich Lambert: Bernoulli's principle Bernoulli's equation: Physical sciences: Daniel Bernoulli: Biot–Savart law: Electromagnetics, fluid dynamics: Jean Baptiste Biot and Félix Savart: Birch's law: Geophysics: Francis Birch: Bogoliubov–Born–Green ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.