Search results
Results from the WOW.Com Content Network
The laser diode chip removed and placed on the eye of a needle for scale A laser diode with the case cut away. The laser diode chip is the small black chip at the front; a photodiode at the back is used to control output power. SEM (scanning electron microscope) image of a commercial laser diode with its case and window cut away. The anode ...
Optical isolator for laser experiments An optical isolator , or optical diode , is an optical component which allows the transmission of light in only one direction. It is typically used to prevent unwanted feedback into an optical oscillator , such as a laser cavity .
Semiconductor lasers or laser diodes play an important part in our everyday lives by providing cheap and compact-size lasers. They consist of complex multi-layer structures requiring nanometer scale accuracy and an elaborate design. Their theoretical description is important not only from a fundamental point of view, but also in order to ...
A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating (Bragg scattering), and the grating provides optical feedback for the
Schematic diagram of a typical laser, showing the three major parts. A laser is constructed from three principal parts: An energy source (usually referred to as the pump or pump source), A gain medium or laser medium, and; Two or more mirrors that form an optical resonator.
A quantum-well laser is a laser diode in which the active region of the device is so narrow that quantum confinement occurs. Laser diodes are formed in compound semiconductor materials that (quite unlike silicon ) are able to emit light efficiently.
Conventional semiconductor laser diodes generate light by a single photon being emitted when a high energy electron in the conduction band recombines with a hole in the valence band. The energy of the photon and hence the emission wavelength of laser diodes is therefore determined by the band gap of the material system used.
Flashlamp, laser diode: Periodontal scaling, dental laser, skin resurfacing Neodymium YLF solid-state laser 1.047 and 1.053 μm Flashlamp, laser diode Mostly used for pulsed pumping of certain types of pulsed Ti:sapphire lasers, combined with frequency doubling. Neodymium-doped yttrium orthovanadate (Nd:YVO 4) laser 1.064 μm laser diode