Search results
Results from the WOW.Com Content Network
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. ... non-piecewise formula, ...
A Fibonacci sequence of order n is an integer sequence in which each sequence element is ... An alternate recursive formula for the limit of ... a non-profit ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
In this section we shall use the Fibonacci Box in place of the primitive triple it represents. An infinite ternary tree containing all primitive Pythagorean triples/Fibonacci Boxes can be constructed by the following procedure. [10] Consider a Fibonacci Box containing two, odd, coprime integers x and y in the right-hand column.
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...
where F n is the n th Fibonacci number. Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 ...
Dov Jarden proved that the Fibonomials appear as coefficients of an equation involving powers of consecutive Fibonacci numbers, namely Jarden proved that given any generalized Fibonacci sequence , that is, a sequence that satisfies = + for every , then