Ads
related to: differential geometry of a surface definition examples worksheet
Search results
Results from the WOW.Com Content Network
Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2. It can also be covered by two local parametrizations, using stereographic projection.
Helicoid as translation surface with identical generatrices , Helicoid as translation surface: any parametric curve is a shifted copy of the purple helix. A helicoid is a special case of a generalized helicoid and a ruled surface. It is an example of a minimal surface and can be represented as a translation surface.
This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics . Differential geometry of curves and surfaces
Pages in category "Differential geometry of surfaces" The following 47 pages are in this category, out of 47 total. ... Translation surface (differential geometry) U.
In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R 3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space.
The second fundamental form of a general parametric surface is defined as follows. Let r = r(u,v) be a regular parametrization of a surface in R 3, where r is a smooth vector-valued function of two variables. It is common to denote the partial derivatives of r with respect to u and v by r u and r v.
The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds.
The Gauss map provides a mapping from every point on a curve or a surface to a corresponding point on a unit sphere. In this example, the curvature of a 2D-surface is mapped onto a 1D unit circle. In differential geometry , the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the ...
Ads
related to: differential geometry of a surface definition examples worksheet