enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...

  3. Havel–Hakimi algorithm - Wikipedia

    en.wikipedia.org/wiki/Havel–Hakimi_algorithm

    A simple graph contains no double edges or loops. [1] The degree sequence is a list of numbers in nonincreasing order indicating the number of edges incident to each vertex in the graph. [2] If a simple graph exists for exactly the given degree sequence, the list of integers is called graphic. The Havel-Hakimi algorithm constructs a special ...

  4. Ribbon graph - Wikipedia

    en.wikipedia.org/wiki/Ribbon_graph

    One may recover the surface itself by gluing a topological disk to the ribbon graph along each boundary component. The partition of the surface into vertex disks, edge disks, and face disks given by the ribbon graph and this gluing process is a different but related representation of the embedding called a band decomposition. [5] The surface ...

  5. Directed acyclic graph - Wikipedia

    en.wikipedia.org/wiki/Directed_acyclic_graph

    That is, it consists of vertices and edges (also called arcs), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge ...

  6. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    The edge-connectivity for a graph with at least 2 vertices is less than or equal to the minimum degree of the graph because removing all the edges that are incident to a vertex of minimum degree will disconnect that vertex from the rest of the graph. [1] For a vertex-transitive graph of degree d, we have: 2(d + 1)/3 ≤ κ(G) ≤ λ(G) = d. [11 ...

  7. Component (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Component_(graph_theory)

    In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4] In a connected graph, there is exactly one component: the whole graph. [4] In a forest, every component is a tree. [5] In a cluster graph, every component is a ...

  8. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    A directed graph is strongly connected if and only if it has an ear decomposition, a partition of the edges into a sequence of directed paths and cycles such that the first subgraph in the sequence is a cycle, and each subsequent subgraph is either a cycle sharing one vertex with previous subgraphs, or a path sharing its two endpoints with ...

  9. Bouquet graph - Wikipedia

    en.wikipedia.org/wiki/Bouquet_graph

    , a bouquet with one vertex and four self-loop edges. In mathematics, a bouquet graph, for an integer parameter , is an undirected graph with one vertex and edges, all of which are self-loops. It is the graph-theoretic analogue of the topological rose, a space of circles joined at a point.