enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  4. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r = 1, the root test is inconclusive, and the series may converge or diverge. The ratio test and the root test are both based on comparison with a geometric series, and as such they work in similar situations. In fact, if the ratio test works (meaning that the limit exists and is not equal to 1) then so does the root test; the converse ...

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    A geometric series is a unit series, meaning the series sum converges to one, if and only if and . The terms of a geometric series are also the elements of a generalized Fibonacci sequence (a recursively defined sequence with when the series's common ratio satisfies the constraint , which is when equals the golden ratio or its conjugate .

  6. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    Calculus. In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity. where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.

  7. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    t. e. In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties ...

  8. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    t. e. In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion.

  9. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    Weierstrass M-test. In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex ...