enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Sudoku solving algorithms. A typical Sudoku puzzle. A standard Sudoku contains 81 cells, in a 9×9 grid, and has 9 boxes, each box being the intersection of the first, middle, or last 3 rows, and the first, middle, or last 3 columns. Each cell may contain a number from one to nine, and each number can only occur once in each row, column, and box.

  3. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    Mathematical context. The general problem of solving Sudoku puzzles on n2 × n2 grids of n × n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.

  4. Sudoku - Wikipedia

    en.wikipedia.org/wiki/Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [29] Many Sudoku solving algorithms , such as brute force -backtracking and dancing links can solve most 9×9 puzzles efficiently, but combinatorial explosion occurs as n increases, creating practical limits to the properties of Sudokus ...

  5. Taking Sudoku Seriously - Wikipedia

    en.wikipedia.org/wiki/Taking_Sudoku_Seriously

    GV1507.S83. Taking Sudoku Seriously: The math behind the world's most popular pencil puzzle is a book on the mathematics of Sudoku. It was written by Jason Rosenhouse and Laura Taalman, and published in 2011 by the Oxford University Press. The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in ...

  6. Backtracking - Wikipedia

    en.wikipedia.org/wiki/Backtracking

    Backtracking is an important tool for solving constraint satisfaction problems, [2] such as crosswords, verbal arithmetic, Sudoku, and many other puzzles. It is often the most convenient technique for parsing , [ 3 ] for the knapsack problem and other combinatorial optimization problems.

  7. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    Dancing Links. In computer science, dancing links (DLX) is a technique for adding and deleting a node from a circular doubly linked list. It is particularly useful for efficiently implementing backtracking algorithms, such as Knuth's Algorithm X for the exact cover problem. [1] Algorithm X is a recursive, nondeterministic, depth-first ...

  8. Killer sudoku - Wikipedia

    en.wikipedia.org/wiki/Killer_Sudoku

    Killer sudoku (also killer su doku, sumdoku, sum doku, sumoku, addoku, or samunamupure) is a puzzle that combines elements of sudoku and kakuro. Despite the name, the simpler killer sudokus can be easier to solve than regular sudokus, depending on the solver's skill at mental arithmetic; the hardest ones, however, can take hours to solve.

  9. Exact cover - Wikipedia

    en.wikipedia.org/wiki/Exact_cover

    Solving Sudoku is an exact cover problem. More precisely, solving Sudoku is an exact hitting set problem, which is equivalent to an exact cover problem, when viewed as a problem to select possibilities such that each constraint set contains (i.e., is hit by) exactly one selected possibility.