Search results
Results from the WOW.Com Content Network
Envelope theorem. In mathematics and economics, the envelope theorem is a major result about the differentiability properties of the value function of a parameterized optimization problem. [1] As we change parameters of the objective, the envelope theorem shows that, in a certain sense, changes in the optimizer of the objective do not ...
Envelope (mathematics) Construction of the envelope of a family of curves. In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two ...
The problem concerns two envelopes, each containing an unknown amount of money. The two envelopes problem, also known as the exchange paradox, is a paradox in probability theory. It is of special interest in decision theory and for the Bayesian interpretation of probability theory. It is a variant of an older problem known as the necktie paradox.
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. [1] It writes the "value" of a decision problem at a certain point in time in terms of the payoff from some initial choices and the "value" of the remaining decision ...
For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...
Empirical process. In probability theory, an empirical process is a stochastic process that characterizes the deviation of the empirical distribution function from its expectation. In mean field theory, limit theorems (as the number of objects becomes large) are considered and generalise the central limit theorem for empirical measures.
In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1] IID was first defined in statistics and finds application in many fields, such as data mining ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations[2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then.