Search results
Results from the WOW.Com Content Network
t. e. Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry ...
The mean corpuscular hemoglobin concentration (MCHC) is a measure of the concentration of hemoglobin in a given volume of packed red blood cell. It is calculated by dividing the hemoglobin by the hematocrit. Reference ranges for blood tests are 32 to 36 g/dL (320 to 360g/L), [1] or between 4.81 and 5.58 mmol/L. It is thus a mass or molar ...
File:Reference ranges for blood tests - by molarity.png. Size of this preview: 792 × 46 pixels. Other resolutions: 320 × 19 pixels | 6,576 × 382 pixels. Original file (6,576 × 382 pixels, file size: 1.11 MB, MIME type: image/png) Wikimedia Commons Commons is a freely licensed media file repository. .
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration. [1][2] where: c is the molar concentration of the electrolyte. The SI unit of molar conductivity is siemens metres squared per mole (S m 2 mol −1). [2]
In chemistry, the molar absorption coefficient or molar attenuation coefficient (ε) [1] is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species. The SI unit of molar absorption coefficient is the square metre per mole (m2/mol), but in practice ...
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The concentration of the solute in a saturated solution is known as the solubility. Units of solubility may be molar (mol dm −3) or expressed as mass per unit volume, such as μg mL −1. Solubility is temperature dependent. A solution containing a higher concentration of solute than the solubility is said to be supersaturated. A ...