Search results
Results from the WOW.Com Content Network
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
The term echelon comes from the French échelon ("level" or step of a ladder), and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase. For square matrices , an upper triangular matrix with nonzero entries on the diagonal is in row echelon form, and a matrix in row echelon form is (weakly ...
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
From 2007 onwards, the scope of the course (along with that of Math 25) was changed to more strictly cover the contents of four semester-long courses in two semesters: Math 25a (linear algebra and real analysis) and Math 122 (group theory and vector spaces) in Math 55a; and Math 25b (real analysis) and Math 113 (complex analysis) in Math 55b.
Some authors use "linear function" only for linear maps that take values in the scalar field; [6] these are more commonly called linear forms. The "linear functions" of calculus qualify as "linear maps" when (and only when) f(0, ..., 0) = 0, or, equivalently, when the constant b equals zero in the one-degree polynomial above. Geometrically, the ...
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold.
Modern control theory, instead of changing domains to avoid the complexities of time-domain ODE mathematics, converts the differential equations into a system of lower-order time domain equations called state equations, which can then be manipulated using techniques from linear algebra. [2]