Search results
Results from the WOW.Com Content Network
The dilation is commutative, also given by = =. If B has a center on the origin, as before, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. In the above example, the dilation of the square of side 10 by the disk of radius 2 is a square of side 14, with rounded corners ...
In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...
Shrink the triangle to 1 / 2 height and 1 / 2 width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2).
Alternatively, a Reuleaux triangle may be constructed from an equilateral triangle T by drawing three arcs of circles, each centered at one vertex of T and connecting the other two vertices. [9] Or, equivalently, it may be constructed as the intersection of three disks centered at the vertices of T, with radius equal to the side length of T. [10]
Lifting each point from the plane to its elevated height lifts the triangles of the triangulation into three-dimensional surfaces, which form an approximation of a three-dimensional landform. A polygon triangulation is a subdivision of a given polygon into triangles meeting edge-to-edge, again with the property that the set of triangle vertices ...
Dilation is commutative, also given by = =. If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with ...
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
Sometimes it is desirable to have a triangulation with special properties, e.g., in which all triangles have large angles (long and narrow ("splinter") triangles are avoided). [3] Given a set of edges that connect points of the plane, the problem to determine whether they contain a triangulation is NP-complete. [4]