Search results
Results from the WOW.Com Content Network
Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). [1] Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls.
Visualization of a software buffer overflow. Data is written into A, but is too large to fit within A, so it overflows into B.. In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
Randomization prevents most buffer overflow attacks and requires the attacker to use heap spraying or other application-dependent methods to obtain addresses, although its adoption has been slow. [5] However, deployments of the technology are typically limited to randomizing libraries and the location of the stack.
Canaries or canary words or stack cookies are known values that are placed between a buffer and control data on the stack to monitor buffer overflows. When the buffer overflows, the first data to be corrupted will usually be the canary, and a failed verification of the canary data will therefore alert of an overflow, which can then be handled, for example, by invalidating the corrupted data.
Buffer overflow is one of the most common programming flaws exploited by computer viruses, causing serious computer security issues (e.g. return-to-libc attack, stack-smashing protection) in widely used programs. In some cases programs can also incorrectly access the memory before the start of a buffer.
A "return-to-libc" attack is a computer security attack usually starting with a buffer overflow in which a subroutine return address on a call stack is replaced by an address of a subroutine that is already present in the process executable memory, bypassing the no-execute bit feature (if present) and ridding the attacker of the need to inject their own code.
An accidental overflow may result in data corruption or unexpected behavior by any process that accesses the affected memory area. On operating systems without memory protection, this could be any process on the system. For example, a Microsoft JPEG GDI+ buffer overflow vulnerability could allow remote execution of code on the affected machine. [1]
In computer security and programming, a buffer over-read [1] [2] or out-of-bounds read [3] is an anomaly where a program, while reading data from a buffer, overruns the buffer's boundary and reads (or tries to read) adjacent memory.