Search results
Results from the WOW.Com Content Network
Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting on it. Suppose that, when the rock is lowered into the water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyant force: 10 − 3 = 7 newtons.
The material is press-ready and may be printed by paying a 5% royalty, and by acknowledging NCERT. [11] The textbooks are in color-print and are among the least expensive books in Indian book stores. [11] Textbooks created by private publishers are priced higher than those of NCERT. [11]
An atmosphere (from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere') [1] is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low.
Total atmospheric mass is 5.1480 × 10 18 kg (1.13494 × 10 19 lb), [36] about 2.5% less than would be inferred from the average sea-level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the ...
Weather reconnaissance aircraft, such as this WP-3D Orion, provide data that is then used in numerical weather forecasts.. The atmosphere is a fluid.As such, the idea of numerical weather prediction is to sample the state of the fluid at a given time and use the equations of fluid dynamics and thermodynamics to estimate the state of the fluid at some time in the future.
The composition of the Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular oxygen. [7] Much of Mercury's atmosphere has been blasted away by the solar wind. [8] The only moon that has retained a dense atmosphere is Titan.
The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.
For most cases, the summation of the series with m = 1, m = 2 and m = 3 will provide an adequate solution. and are functions of the atmospheric stability class (i.e., a measure of the turbulence in the ambient atmosphere) and of the downwind distance to the receptor. The two most important variables affecting the degree of pollutant emission ...