Search results
Results from the WOW.Com Content Network
Hybridisation theory is an integral part of organic chemistry, one of the most compelling examples being Baldwin's rules. For drawing reaction mechanisms sometimes a classical bonding picture is needed with two atoms sharing two electrons. [5] Hybridisation theory explains bonding in alkenes [6] and methane. [7]
In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. [1] [2] The rule was stated by Henry A. Bent as follows: [2] Atomic s character concentrates in orbitals directed toward electropositive substituents.
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
[18]: 1165 Examples of this include the octacyanomolybdate (Mo(CN) 4− 8) and octafluorozirconate (ZrF 4− 8) anions. [18]: 1165 The nonahydridorhenate ion (ReH 2− 9) in potassium nonahydridorhenate is a rare example of a compound with a steric number of 9, which has a tricapped trigonal prismatic geometry. [13]: 254 [18]
Isovalent hybridization is used to explain bond angles of those molecules that is inconsistent with the generalized simple sp, sp 2 and sp 3 hybridization. For molecules containing lone pairs, the true hybridization of these molecules depends on the amount of s and p characters of the central atom which is related to its electronegativity.
Structure of xenon oxytetrafluoride, an example of a molecule with the square pyramidal coordination geometry. Square pyramidal geometry describes the shape of certain chemical compounds with the formula ML 5 where L is a ligand. If the ligand atoms were connected, the resulting shape would be that of a pyramid with a square base.
In these compounds, it is not possible for the carbon atoms to assume the 109.5° bond angles with standard sp 3 hybridization. Increasing the p-character to sp 5 (i.e. 1 ⁄ 6 s-density and 5 ⁄ 6 p-density) [5] makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which ...
Isostructural chemical compounds have similar chemical structures."Isomorphous" when used in the relation to crystal structures is not synonymous: in addition to the same atomic connectivity that characterises isostructural compounds, isomorphous substances crystallise in the same space group and have the same unit cell dimensions. [1]