Search results
Results from the WOW.Com Content Network
Macroscopic material failure is defined in terms of load carrying capacity or energy storage capacity, equivalently. Li [2] presents a classification of macroscopic failure criteria in four categories: Stress or strain failure; Energy type failure (S-criterion, T-criterion) Damage failure; Empirical failure
The T-failure criterion is a set of material failure criteria that can be used to predict both brittle and ductile failure. [1] [2]These criteria were designed as a replacement for the von Mises yield criterion which predicts the unphysical result that pure hydrostatic tensile loading of metals never leads to failure.
Failure Reporting (FR). The failures and the faults related to a system, a piece of equipment, a piece of software or a process are formally reported through a standard form (Defect Report, Failure Report). Analysis (A). Perform analysis in order to identify the root cause of failure. Corrective Actions (CA).
Prior to yield, material response can be assumed to be of a linear elastic, nonlinear elastic, or viscoelastic behavior. In materials science and engineering , the von Mises yield criterion is also formulated in terms of the von Mises stress or equivalent tensile stress , σ v {\displaystyle \sigma _{\text{v}}} .
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
The Tsai hill criterion is interactive, i.e. the stresses in different directions are not decoupled and do affect the failure simultaneously. [2] Furthermore, it is a failure mode independent criterion, as it does not predict the way in which the material will fail, as opposed to mode-dependent criteria such as the Hashin criterion, or the Puck ...
Thermal expansion produces mechanical stresses that may cause material fatigue, especially when the thermal expansion coefficients of the materials are different. Humidity and aggressive chemicals can cause corrosion of the packaging materials and leads, potentially breaking them and damaging the inside parts, leading to electrical failure.
Failure effects are determined and entered for each row of the FMECA matrix, considering the criteria identified in the ground rules. Effects are separately described for the local, next higher, and end (system) levels. System level effects may include: System failure; Degraded operation; System status failure; No immediate effect