enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.

  3. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  5. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Consider all cells (x, y) in which both x and y are integers between − r and r. Starting at 0, add 1 for each cell whose distance to the origin (0, 0) is less than or equal to r. When finished, divide the sum, representing the area of a circle of radius r, by r 2 to find the approximation of π. For example, if r is 5, then the cells ...

  6. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    Pi is defined as the ratio of a circle's circumference to its diameter: [4] =. Or, equivalently, as the ratio of the circumference to twice the radius . The above formula can be rearranged to solve for the circumference: C = π ⋅ d = 2 π ⋅ r . {\displaystyle {C}=\pi \cdot {d}=2\pi \cdot {r}.\!}

  7. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Pi: 3.14159 26535 89793 23846 [Mw 1] [OEIS 1] Ratio of a circle's circumference to its diameter. 1900 to 1600 BCE [2] Tau: 6.28318 53071 79586 47692 [3] [OEIS 2] Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2, Pythagoras constant [4]

  8. Liu Hui's π algorithm - Wikipedia

    en.wikipedia.org/wiki/Liu_Hui's_π_algorithm

    The area within a circle is equal to the radius multiplied by half the circumference, or A = r x C /2 = r x r x π.. Liu Hui argued: "Multiply one side of a hexagon by the radius (of its circumcircle), then multiply this by three, to yield the area of a dodecagon; if we cut a hexagon into a dodecagon, multiply its side by its radius, then again multiply by six, we get the area of a 24-gon; the ...

  9. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value