Search results
Results from the WOW.Com Content Network
This experiment is an example of a 2 2 (or 2×2) factorial experiment, so named because it considers two levels (the base) for each of two factors (the power or superscript), or #levels #factors, producing 2 2 =4 factorial points. Cube plot for factorial design . Designs can involve many independent variables.
Before performing a Yates analysis, the data should be arranged in "Yates' order". That is, given k factors, the k th column consists of 2 (k - 1) minus signs (i.e., the low level of the factor) followed by 2 (k - 1) plus signs (i.e., the high level of the factor). For example, for a full factorial design with three factors, the design matrix is
Design of experiments with full factorial design (left), response surface with second-degree polynomial (right) The design of experiments , also known as experiment design or experimental design , is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation.
In the statistical analysis of the results from factorial experiments, the sparsity-of-effects principle states that a system is usually dominated by main effects and low-order interactions. Thus it is most likely that main (single factor) effects and two-factor interactions are the most significant responses in a factorial experiment.
Higher-order factor analysis is a statistical method consisting of repeating steps factor analysis – oblique rotation – factor analysis of rotated factors. Its merit is to enable the researcher to see the hierarchical structure of studied phenomena.
Example: Consider a fractional factorial design with factors ,,,, and maximum strength =. Then: All effects up to three-factor interactions are preserved in the fraction. Main effects are unaliased with each other and with two-factor interactions.
Let X 1 be dosage "level" and X 2 be the blocking factor furnace run. Then the experiment can be described as follows: k = 2 factors (1 primary factor X 1 and 1 blocking factor X 2) L 1 = 4 levels of factor X 1 L 2 = 3 levels of factor X 2 n = 1 replication per cell N = L 1 * L 2 = 4 * 3 = 12 runs. Before randomization, the design trials look like:
Example of direct replication and conceptual replication There are two main types of replication in statistics. First, there is a type called “exact replication” (also called "direct replication"), which involves repeating the study as closely as possible to the original to see whether the original results can be precisely reproduced. [ 3 ]