Search results
Results from the WOW.Com Content Network
Cerebrospinal fluid (CSF) is a clear, colorless transcellular body fluid found within the meningeal tissue that surrounds the vertebrate brain and spinal cord, and in the ventricles of the brain. CSF is mostly produced by specialized ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid ...
In healthy individuals, only 0-5 white blood cells per μL are normally present in the CSF. [2] In patients with pseudomigraines, studies have shown concentrations ranging from 10 to 760 cells per mm 3, with a mean concentration of 199 ± 174 cells per mm 3. [3]
Heme from red blood cells (RBC) that are in the cerebrospinal fluid because a blood vessel was damaged during the lumbar puncture (a "traumatic tap") has no time to be metabolized, and therefore no bilirubin is present. After the cerebrospinal fluid is obtained, a variety of its parameters can be checked, including the presence of xanthochromia.
Typically for an OCB analysis, the CSF is concentrated and the serum is diluted. After this dilution/concentration prealbumin appears as higher on CSF. Albumin is typically the dominant band on both fluids. Transferrin is another prominent protein on CSF column because its small molecular size easily increases its filtration in to CSF.
The principal buffers for increased volumes include CSF and, to a lesser extent, blood volume. These buffers respond to increases in volume of the remaining intracranial constituents. For example, an increase in lesion volume (e.g., epidural hematoma) will be compensated by the downward displacement of CSF and venous blood. [24]
The blood–CSF boundary at the choroid plexus is a membrane composed of epithelial cells and tight junctions that link them. [14] There is a CSF-brain barrier at the level of the pia mater, but only in the embryo. [15] Similar to the blood–brain barrier, the blood–CSF barrier functions to prevent the passage of most blood-borne substances ...
The lack of blood flow results in cell death and subsequent breakdown of the blood vessel walls, leading to bleeding. While this bleeding can result in further injury, it is itself a marker for injury that has already occurred. Most intraventricular hemorrhages occur in the first 72 hours after birth. [9]
[24] [73] [74] [75] Analysis of spinal fluid may demonstrate lymphocytic pleocytosis and elevated protein content or xanthochromia. This is hypothesized to be due to increased permeability of dilated meningeal blood vessels and a decrease of CSF flow in the lumbar subarachnoid space. [24]