Search results
Results from the WOW.Com Content Network
Stroma, in botany, refers to the colorless fluid surrounding the grana within the chloroplast. [ 1 ] Within the stroma are grana (stacks of thylakoid ), the sub-organelles where photosynthesis is started [ 2 ] before the chemical changes are completed in the stroma.
The sum of reactions in the Calvin cycle is the following: [citation needed] 3 CO 2 + 6 NADPH + 9 ATP + 5 H 2 O → glyceraldehyde-3-phosphate (G3P) + 6 NADP + + 9 ADP + 8 P i (P i = inorganic phosphate) Hexose (six-carbon) sugars are not products of the Calvin cycle. Although many texts list a product of photosynthesis as C 6 H 12 O
In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b 6 f uses electrons from PSII and energy from PSI [citation needed] to pump protons from the stroma to the lumen. The ...
So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane. In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Cyclic ...
Photosynthesis changes sunlight into chemical energy, splits water to liberate O 2, and fixes CO 2 into sugar. Most photosynthetic organisms are photoautotrophs, which means that they are able to synthesize food directly from carbon dioxide and water using energy from light.
It is possible to introduce an artificial electron acceptor into the light reaction, such as a dye that changes color when it is reduced. These are known as Hill reagents. These dyes permitted the finding of electron transport chains during photosynthesis. Dichlorophenolindophenol (DCPIP), an example of these dyes, is widely used by experimenters.
Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
The N-terminus of the chlorophyll a-b binding protein extends into the stroma where it is involved with adhesion of granal membranes and photo-regulated by reversible phosphorylation of its threonine residues. [2] Both these processes are believed to mediate the distribution of excitation energy between photosystems I and II.