Search results
Results from the WOW.Com Content Network
This is the case of the theory of polynomials over an algebraically closed field, where elimination theory may be viewed as the theory of the methods to make quantifier elimination algorithmically effective. Quantifier elimination over the reals is another example, which is fundamental in computational algebraic geometry.
The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.
The backward Euler method is an implicit method: the new approximation + appears on both sides of the equation, and thus the method needs to solve an algebraic equation for the unknown +. For non-stiff problems, this can be done with fixed-point iteration:
One method of implementing back-face culling is by discarding all triangles where the dot product of their surface normal and the camera-to-triangle vector is greater than or equal to zero: ( V 0 − P ) ⋅ N ≥ 0 {\displaystyle \left(V_{0}-P\right)\cdot N\geq 0}
The main theorem of elimination theory is a corollary and a generalization of Macaulay's theory of multivariate resultant. The resultant of n homogeneous polynomials in n variables is the value of a polynomial function of the coefficients, which takes the value zero if and only if the polynomials have a common non-trivial zero over some field ...
In dynamic programming, a method of mathematical optimization, backward induction is used for solving the Bellman equation. [3] [4] In the related fields of automated planning and scheduling and automated theorem proving, the method is called backward search or backward chaining. In chess, it is called retrograde analysis.