enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real coefficients, it is often useful to bound only the real roots. It suffices to bound the positive roots, as the negative roots of p(x) are the positive roots of p(–x). Clearly, every bound of all roots applies also for real roots. But in some contexts, tighter bounds of real roots are useful.

  5. Routh–Hurwitz theorem - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_theorem

    Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary axis (i.e. the line z = ic where i is the imaginary unit and c is a real number).Let us define real polynomials P 0 (y) and P 1 (y) by f(iy) = P 0 (y) + iP 1 (y), respectively the real and imaginary parts of f on the imaginary line.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...

  7. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Before continuing to the roots of (), it might be necessary to numerically improve the accuracy of the root approximations for (), for instance by Newton's method. Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity.

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...

  9. Halley's method - Wikipedia

    en.wikipedia.org/wiki/Halley's_method

    Halley's method is a numerical algorithm for solving the nonlinear equation f(x) = 0.In this case, the function f has to be a function of one real variable. The method consists of a sequence of iterations: