Search results
Results from the WOW.Com Content Network
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
mg/m 3 = milligrams of pollutant per cubic meter of air at sea level atmospheric pressure and T: ppmv = air pollutant concentration, in parts per million by volume T = ambient temperature in K = 273. + °C 0.082057338 = Universal gas constant in L atm mol −1 K −1: M = molecular mass (or molecular weight) of the air pollutant
Its units are in parts per million (ppm) for gases and in milligrams per cubic meter (mg/m 3) for particulates such as dust, smoke and mist. The basic formula for converting between ppm and mg/m 3 for gases is ppm = (mg/m^3) * 24.45 / molecular weight. This formula is not applicable to airborne particles.
At 10 000 ppm the solution is a deep red colour. As the concentration decreases the colour becomes orange, then a vibrant yellow, with the final 1 ppm sample a very pale yellow. In science and engineering , the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities , e.g. mole fraction or ...
where TDS is expressed in mg/L and EC is the electrical conductivity in microsiemens per centimeter at 25 °C. The conversion factor k e varies between 0.55 and 0.8. [5] Some TDS meters use an electrical conductivity measurement to the ppm using the above formula. Regarding units, 1 ppm indicates 1 mg of dissolved solids per 1,000 g of water. [6]
Chemical regulation is sometimes [clarification needed] expressed in parts per million (ppm), but often [clarification needed] in milligrams per cubic meter (mg/m 3). [2] Units of measure for physical agents such as noise are specific to the agent.
However, most chemical literature traditionally uses mol/dm 3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example: 1 mol/m 3 = 10 −3 mol/dm 3 = 10 −3 mol/L = 10 −3 M = 1 mM = 1 mmol/L. The SI prefix "mega" (symbol M) has the same symbol. However, the prefix is never used ...
Turpentine is also used as a source of raw materials in the synthesis of fragrant chemical compounds. Commercially used camphor, linalool, alpha-terpineol, and geraniol are all usually produced from alpha-pinene and beta-pinene, which are two of the chief chemical components of turpentine. These pinenes are separated and purified by distillation.