Ad
related to: example of ring in algebra
Search results
Results from the WOW.Com Content Network
The prototypical example is the ring of integers with the two operations of addition and multiplication. The rational, real and complex numbers are commutative rings of a type called fields. A unital associative algebra over a commutative ring R is itself a ring as well as an R-module. Some examples: The algebra R[X] of polynomials with ...
In algebra, ring theory is the study of rings, ... The structure of a noncommutative ring is more complicated than that of a commutative ring. For example, ...
One defines the ring of integers of a non-archimedean local field F as the set of all elements of F with absolute value ≤ 1; this is a ring because of the strong triangle inequality. [12] If F is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an ...
In algebra, a group ring is a free module and at the same time a ring, ... For example, consider the group ring Z[S 3] and the element of order 3 g = (123).
An example of a simple ring that is not semisimple is the Weyl algebra. The Weyl algebra also gives an example of a simple algebra that is not a matrix algebra over a division algebra over its center: the Weyl algebra is infinite-dimensional, so Wedderburn's theorem does not apply.
The factor ring of a maximal ideal is a simple ring in general and is a field for commutative rings. [12] Minimal ideal: A nonzero ideal is called minimal if it contains no other nonzero ideal. Zero ideal: the ideal {}. [13] Unit ideal: the whole ring (being the ideal generated by ). [9]
Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal .
The category of commutative rings, denoted CRing, is the full subcategory of Ring whose objects are all commutative rings. This category is one of the central objects of study in the subject of commutative algebra. Any ring can be made commutative by taking the quotient by the ideal generated by all elements of the form (xy − yx).
Ad
related to: example of ring in algebra